LIST OF SELECTED PUBLICATIONS

The list is chronological and is HTML organized. Clicking at the highlighted number of any paper brings up the next paper on the a similar subject.

SUBMITTED

ACCEPTED FOR PUBLICATION 

PUBLISHED

189. M. I. Stockman, Nanoplasmonics: Fundamentals and Applications, in Nano-Structures for Optics and Photonics, edited by B. di Bartolo et al. (Springer Netherlands, 2015).

188. S. Ghimire, G. Ndabashimiye, A. D. DiChiara, E. Sistrunk, M. I. Stockman, P. Agostini, L. F. DiMauro, and D. A. Reis, Strong-Field and Attosecond Physics in Solids, J. Phys. B: Atom. Mol. Opt. Phys. 47, 204030-1-10 (2014). [ PDF file]

187. M. Stockman, Plasmonic Lasers: On the Fast Track, Nat. Phys. advance online publication, doi: 10.1038/nphys3127 (2014).

186. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Wannier-Stark States of Graphene Monolayer in Strong Electric Field, arXiv:1405.1141 (2014); Phys. Rev. B 90 085313-1-11 (2014). [ PDF file]

185. T. Higuchi, M. I. Stockman, and P. Hommelhoff, Strong-Field Perspective on High-Harmonic Radiation from Bulk Solids, Phys. Rev. Lett. 113, 213901-1-5 (2014). [ PDF file]

184. W. Zhu, M. Premaratne, S. D. Gunapala, G. P. Agrawal, and M. I. Stockman, Quasi-Static Analysis of Controllable Optical Cross-Sections of a Layered Nanoparticle with a Sandwiched Gain Layer, Journal of Optics 16, 075003-1-6 (2014). [ PDF file]

183. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Interaction of Graphene Monolayer with Ultrashort Laser Pulse, arXiv:1401.5786 [cond-mat.mes-hall], 1-11 (2014).

182. Y.-J. Lu, C.-Y. Wang, J. Kim, H.-Y. Chen, M.-Y. Lu, Y.-C. Chen, W.-H. Chang, L.-J. Chen, M. I. Stockman, C.-K. Shih, and S. Gwo, All-Color Plasmonic Nanolasers with Ultralow Thresholds: Autotuning Mechanism for Single-Mode Lasing, Nano Lett., 14, 4381–4388 (2014). (2014).  [ PDF file]

181. Vadym Apalkov and Mark I. Stockman, Proposed Graphene Spaser, Light: Science and Applications 3, e191-1-6 (2014) [ PDF file]; arXiv:1303.0220 [cond-mat.mes-hall], 1-5 (2013).

180. Ferenc Krausz and Mark I. Stockman, Attosecond Metrology: From Capturing Electrons toward Speeding up Signal Processing, Nat. Phot.  8, 205-213 (2014). [ PDF file]

179.  F. Süßmann, S. L. Stebbings, S. Zherebtsov, S. H. Chew, M. I. Stockman, E. Rühl, T. Fennel, U. Kleineberg, and M. F. Kling, Attosecond Nanophysics, in Attosecond and XUV Spectroscopy: Ultrafast Dynamics and Spectroscopy, edited by T. Schultz and M. Vrakking (John Wiley & Sons, 2014).

178. T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Saglam Ozge, S. Keiber, O. Razskazovskaya, S. Muhlbrandt, A. Alnaser, M. Kubel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, and F. Krausz, Solid-State Light-Phase Detector, Nat. Phot. 8, 214–218  (2014). [ PDF file]
177. P. Hommelhoff, M. F. Kling, and M. I. Stockman, Ultrafast Phenomena on the Nanoscale, Ann. Phys-Berlin 525, A13-A14 (2013).

176.  Vadym Apalkov and Mark I. Stockman, Metal Nanofilm in Strong Ultrafast Optical FieldsarXiv:1209.2245 [cond-mat.mes-hall], 1-5 (2013); Phys. Rev. B 88, 245438-1-7 (2013). [ PDF file]

175. M. I. Stockman, Nanoplasmonics: From Present into Future, in Plasmonics: Theory and Applications, edited by T. V. Shahbazyan and M. I. Stockman (Springer Dordrecht, Heidelberg, New York, London, 2013), Vol. 15, p. 1-101. [ PDF file]

174. M. I. Stockman, Lasing Spaser in Two-Dimensional Plasmonic Crystals, NPG Asia Mater, 5, e71-e71, 2013. [ PDF file]

173. A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R. Proietti Zaccaria, M. I. Stockman, and E. Di Fabrizio, Hot-Electron Nanoscopy Using Adiabatic Compression of Surface Plasmons, Nat. Nano, advance online publication, 10.1038/nnano.2013.207 (2013).  [ PDF file, PDF file]

172. M. I. Stockman, Spaser, Plasmonic Amplification, and Loss Compensation, in Active Plasmonics and Tuneable Plasmonic Metamaterials, edited by A. V. Zayats and S. Maier (John Wiley and Sons, Hoboken, NJ, 2013). [ PDF file]

171. Dabing Li and Mark I. Stockman, Electric Spaser in the Extreme Quantum Limit, Phys. Rev. Lett. 110, 106803-1-5 (2013); arXiv:1211.0366 [cond-mat.mes-hall] 1-5 (2012) [ PDF file]

170.  Martin Schultze, Elisabeth Bothschafter, Annkatrin Sommer, Simon Holzner, Markus Fiess, Michael Hofstetter, Reinhard Kienberger, Vadym Apalkov, Vladislav S. Yakovlev, Mark I. Stockman, and Ferenc Krausz, Controlling Dielectrics with the Electric Field of Light, Nature 493, 75-78 (2013). doi: 10.1038/nature11720 (2012)  [ PDF file]

169. Agustin Schiffrin, Tim Paasch-Colberg, Nicholas Karpowicz, Vadym Apalkov, Daniel Gerster, Sascha Mühlbrandt, Michael Korbman, Joachim Reichert, Martin Schultze, Simon Holzner, Johannes Barth, Reinhard Kienberger, Ralph Ernstorfer, Vladislav S. Yakovlev, Mark I. Stockman, and Ferenc Krausz, Optical Field-Induced Current in Dielectrics, Nature 493, 70-74 (2013); doi: 10.1038/nature11567 (2012) [ PDF file]

168.   Vadym Apalkov and Mark I. Stockman, Theory of Dielectric Nanofilms in Strong Ultrafast Optical Fields, Phys. Rev. B  86, 165118-1-13 (2012)  [ PDF file]

167.  S. H. Chew, F. Sussmann, C. Spath, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, Time-of-Flight-Photoelectron Emission Microscopy on Plasmonic Structures Using Attosecond Extreme Ultraviolet Pulses, Appl. Phys. Lett. 100, 051904-4 (2012). doi: 10.1063/1.3670324.  [ PDF file]

166.   M. I. Stockman, Nanoplasmonics: Past, Present, and Glimpse into Future, Opt. Express 19, 22029-22106 (2011). doi: 10.1364/OE.19.022029. [ PDF file]

165.  I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, Plasmonic Generation of Ultrashort Extreme-Ultraviolet Light Pulses, Nat. Phot. (2011). doi: 10.1038/nphoton.2011.258.  [ PDF file]
164.   M. I. Stockman, Loss Compensation by Gain and Spasing, Phil. Trans. R. Soc. A 369, 3510-3524 (2011). doi: 10.1098/rsta.2011.0143. [ PDF file]
163.  S. L. Stebbings, F. Süßmann, Y.-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, Generation of Isolated Attosecond Extreme Ultraviolet Pulses Employing Nanoplasmonic Field Enhancement: Optimization of Coupled Ellipsoids, New J. Phys. 13, 073010 (2011). doi:10.1088/1367-2630/13/7/073010. [ PDF file]
162.   M. Durach, A. Rusina, M. Kling, and M. I. Stockman, Predicted Ultrafast Dynamic Metallization of Dielectric Nanofilms by Strong Single-Cycle Optical Fields, arXiv:1104.1642 (2011); Phys. Rev. Lett. 107, 086602-1-5 (2011). [ PDF file]
161. S. Zherebtsov, Th. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. Trushin, V. Pervak, S. Karsch, M.J.J. Vrakking, B. Langer, C. Graf, M. Stockman, F. Krausz, E. Rüh, M.F. Kling, Controlled Near-Field Enhanced Electron Acceleration from Dielectric Nanospheres with Intense Few-Cycle Laser Fields, Nature Physics, 2011. DOI: 10.1038/NPHYS1983. [ PDF file]
160. M. I. Stockman, Nanoplasmonics: The Physics Behind the Applications, Physics Today 64, 39-44 (2011) [PDF file, Physics Today cover page, La Sainte-Chapelle (Paris) window with light scattering attributed to plasmonic nanoparticles - JPEG file]; Japanese translation: Parity, 27, 4-12, 2012 [PDF file].
159. M. I. Stockman, Spaser Action, Loss Compensation, and Stability in Plasmonic Systems with Gain, Phys. Rev. Lett. 106, 156802-1-4 (2011) [ PDF file]; arXiv:1011.3751, 1-4 (2010)
158. M. I. Stockman, A Fluctuating Fractal Nanoworld, Physics 3, 90 (2010) [ PDF file]
157. M. I. Stockman, Dark-Hot Resonances, Nature 467, 541-542 (2010) [ PDF file]
156. Maxim Durach, Anastasia Rusina, Matthias F. Kling, and Mark I. Stockman, Metallization of Nanofilms in Strong Adiabatic Electric Fields, Phys. Rev. Lett. 105, 086803-1-4 (2010) [ PDF file] ; arXiv:1007.2171
155. A. Rusina, M. Durach, and M. Stockman, Theory of Spoof Plasmons in Real Metals, Appl. Phys. A 100, 375-1-4 (2010). [ PDF file]
154. T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, All-Optical Control of the Ultrafast Dynamics of a Hybrid Plasmonic System, Phys. Rev. Lett. 104, 113903-1-4 (2010) [ PDF file]

153. M. I. Stockman, Spaser as Nanoscale Generator and Ultrafast Amplifier, J. Opt. 12, 024004-1-13 (2010) [ PDF file]arXiv:0908.3559.

152. M. I. Stockman, M. F. Kling, Ulf Kleineberg, and F. Krausz, Attosecond Nanoplasmonic Field Microscope, in Ultrafast Phenomena XVI (Proceedings of the 16th International Conference, Palazzo Dei Congressi Stresa, Italy, June 9-13, 2008), edited by P. Corkum, S. D. Silvestri, K. A. Nelson, E. Riedle and R. W. Schoenlein (Springer, Heidelberg, London, New York, 2009), p. 696-698.

151.  M. Durach, A. Rusina, and M. I. Stockman, Giant Surface Plasmon Induced Drag Effect (SPIDER) in Metal Nanowires, arXiv:0907.1621. Phys. Rev. Lett. 103 186801-1-4 (2009) [ PDF file].

150.  M. I. Stockman and D. J. Bergman, Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER), USA Patent No. 7,569,188 (August 4, 2009) (This invention was made with government support under Grant No. DE-FG02-01ER15213 awarded by the U.S. Department of Energy). [ PDF file], [ USPTO Patent Reference].

149. J. Q. Lin, N. Weber, A. Wirth, S. H. Chew, M. Escher, M. Merkel, M. F. Kling, M. I. Stockman, F. Krausz, and U. Kleineberg, Time of Flight-Photoemission Electron Microscope for Ultrahigh Spatiotemporal Probing of Nanoplasmonic Optical Fields, J. Phys.: Condens. Mat. 21, 314005-1-7 (2009). [PDF file].

148. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, Ultrafast Active Plasmonics: Transmission and Control of Femtosecond Plasmon Signals,  arXiv:0807.2542 (2008); Ultrafast Active Plasmonics, Nature Photonics, Ultrafast Active Plasmonics, Nature Photonics, Advanced online publication, DOI:10.1038/nphoton.2008.249 (2008) [PDF file].

147. M. I. Stockman, in Plasmonic  Nanoguides and Circuits, edited by S. I. Bozhevolny, Adiabatic Concentration and Coherent Control in Nanoplasmonic Waveguides (World Scientific Publishing, Singapore, 2008).[PDF file].

146. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, Optimized Nonadiabatic Nanofocusing of Plasmons by Tapered Metal Rods, J. Appl. Phys. 104, 034311-1-8 (2008) [PDF file].

145. M. I. Stockman, Attosecond Physics - an Easier Route to High Harmony, Nature 453, 731-733 (2008) [PDF file].

144. M. I. Stockman, Spasers Explained, Nature Photonics 2, 327-329 (2008) [PDF file].

143. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, Nanoconcentration of Terahertz Radiation in Plasmonic Waveguides, Opt. Expr. 16, 18576-18589 (2008) [PDF file]; arXiv:0808.1324.

142. M. Durach, A. Rusina, V. Klimov, and M. I. Stockman,  Nanoplasmonic Renormalization and Enhancement of Coulomb Interactions, New J. Phys. 10, 105011-1-14 (2008) [PDF file]; arXiv:0802.0229.

141. Xiangting Li and Mark I. Stockman, Efficient Coherent Control in Nanoplasmonics, http://www.arxiv.org/abs/0705.0553;  Highly Efficient Spatiotemporal Coherent Control in Nanoplasmonics on a Nanometer-Femtosecond Scale by Time Reversal, Phys. Rev. B 77, 195109-1-10 (2008) [PDF file].

140.  Janina Kneipp, Xiangting Li, Margaret Sherwood, Ulrich Panne, Harald Kneipp, Mark Stockman, and Katrin Kneipp, Self-Similar Gold Nanoaggregates Made by Laser Ablation – An Efficient SERS Active Substrate for Analytical Applications, Anal. Chem.  80, 4247-4251 (2008). [PDF file].

139. M. I. Stockman, Ultrafast Nanoplasmonics under Coherent Control, New J. Phys. 10, 025031-1-20 (2008).  [PDF file].

138. Jianhua Dai, Frantisek Cajko, Igor Tsukerman, and Mark I. Stockman, Electrodynamic Effects in Optical Nanolens, Phys. Rev. B77, 115419-1-5 (2008). [PDF file].

137. Maxim Durach, Anastasia Rusina, Keith Nelson, and Mark I. Stockman, Toward Full Spatio-Temporal Control on the Nanoscale, Nano Lett. 7, 3145-3149 (2007); (DOI:10.1021/nl071718g, 5 pages) (2007) [PDF file].

136. M. I. Stockman, M. F. Kling, U. Kleineberg, F. Krausz, Attosecond Nanoplasmonic Field Microscope, Nature Photonics 1, 539-544 (2007) (DOI:10.1038/nphoton.2007.169) (2007) [PDF file].

135. M. I. Stockman and P. Hewageegana, Absolute Phase Effect in Ultrafast Optical Responses of Metal Nanostructures, Appl. Phys. A 89(2), 247-250 (2007); (DOI: 10.1007/s00339-007-4105-7)  [PDF file]

134. M. I. Stockman, Criterion for Negative Refraction with Low Optical Losses from  a Fundamental Principle of Causality, Preprint cond-mat/0611350 (2006), http://arxiv.org/abs/cond-mat/0611350; Phys. Rev. Lett. 98, 177404-1-4 (2007) [PDF file]

133. M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, Octupolar Metal Nanoparticles as Optically Driven, Coherently Controlled Nanomotors, Chem. Phys. Lett. 433, 130-135 (2006); doi:10.1016/j.cplett.2006.11.015  [PDF file]

132. K. Li, M. I. Stockman, and D. J. Bergman, Li, Stockman, and Bergman Reply to Comment On "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens", Phys. Rev. Lett. 97, 079702 (2006). [PDF file].

131 M. I. Stockman, Slow Propagation, Anomalous Absorption, and Total External Reflection of Surface Plasmon Polaritons in Nanolayer Systems, Nano Lett. 6, 2604-2608 (2006).  [ PDF file]

130. M. I. Stockman, Electromagnetic Theory of SERS, in Springer Series Topics in Applied Physics, edited by K. Kneipp, M. Moskovits and H. Kneipp, Surface Enhanced Raman Scattering – Physics and Applications (Springer-Verlag, Heidelberg New York Tokyo, 2006).  [PDF file]

129. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, Generation of Traveling Surface Plasmon Waves by Free-Electron Impact, Nano Lett. 6, 1113-1115 (2006). [PDF file]

128. M. I. Stockman and P. Hewageegana, Nanolocalized Nonlinear Electron Photoemission under Coherent Control, Nano Lett. 5(11), 2325-2329 (2005) [PDF file].

127. K. Li, M. I. Stockman, and D. J. Bergman, Enhanced Second Harmonic Generation in a Self-Similar Chain of Metal Nanospheres, Phys. Rev. B 72, 153401-1-4 (2005) [PDF file]

126. M. I. Stockman, Giant Fluctuations of Second Harmonic Generation on Nanostructured Surfaces, Chem. Phys. 318, 156-162 (2005) (Invited paper). [PDF file]

125. L. N. Gaier, M. Lein, M. I. Stockman, G. L. Yudin, P. B. Corkum, M. Y. Ivanov, and P. L. Knight, Hole-Assisted Energy Deposition in Dielectrics and Clusters in the Multiphoton Regime, J. Mod. Optics 52, 1019-1030 (2005). [PDF file]

124. K. Li, Xiangting Li, M. I. Stockman, and D. J. Bergman, Surface Plasmon Amplification by Stimulated Emission in Nanolenses, Phys. Rev. B 71, 115409-1-5 (2005). [PDF file]

123. I. A. Larkin and M. I. Stockman, Imperfect Perfect Lens, Nano Lett. 5(2), 339-343 (2005). [PDF file]

122. M. I. Stockman, Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides, Phys. Rev. Lett. 93, 137404-1-4 (2004). [PDF file]

121. M. I. Stockman, From Nano-Optics to Street Lights, Nature Materials, 3, 423-424 (2004). [PDF file]; http://info.nature.com/cgi-bin24/DM/y/hPav0Bl1nN0Dj0O4L0AY

120.  P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Plasmon Hybridization in Nanoparticle Dimers, Nano Letters 4(5) 899-903 (2004). [PDF file]

119.  D. J. Bergman and M. I. Stockman, Can We Make a Nanoscopic Laser?, Laser Phys. 14, 409-411 (2004). [PDF file]

118.  I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, Dipolar Emitters at Nanoscale Proximity of Metal Surfaces:  Giant Enhancement of Relaxation, Phys. Rev. B. (Rapid Communications) 69, 121403(R)-1-4 (2004). [PDF file]

117.  M. I. Stockman, D. J. Bergman, and T. Kobayashi, Coherent Control of Nanoscale Localization of Ultrafast Optical Excitation in Nanosystems, Phys. Rev. B 69, 054202-1-10 (2004). [PDF file]

116. A. A. Mikhailovsky, M. A. Petruska, Kuiru Li, M. I. Stockman, and V. I. Klimov, Phase-Sensitive Spectroscopy of Surface Plasmons in Individual Metal Nanostructures, Phys. Rev. B 69, 085401-1-5 (2004). [PDF file]

115.  M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, Enhanced Second Harmonic Generation By Metal Surfaces with Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations, Phys. Rev. Lett. 92, 057402-1-4 (2004). [PDF file].

114.  L. N. Gaier, M. Lein, M. I. Stockman, P. L. Knight, P. B. Corkum, M. Yu. Ivanov and G. L. Yudin, Ultrafast Multiphoton Forest Fires and Fractals in Clusters and Dielectrics, J. Phys. B: At. Mol. Opt. Phys. 37, L57-L67 (2004) [PDF file].

113. Kuiru Li, Mark I. Stockman, and David J. Bergman, Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens, Phys. Rev. Lett. 91, 227402-1-4 (2003) [PDF file].

112. M. I. Stockman, S. V. Faleev, and D. J. Bergman, Femtosecond Energy Concentration in Nanosystems: Coherent Control, Physica B: Physics of Condensed Matter 338, 361-365 (2003) [PDF file].

111.  M. I. Stockman, D. J. Bergman, and T. Kobayashi, Coherent Control of Ultrafast Nanoscale Localization of Optical Excitation Energy [Invited Paper at Optical Science and Technology Conference (2003 SPIE Annual Meeting)]. In: Plasmonics: Metallic Nanostructures and Their Optical Properties (Naomi J. Halas, Ed.), Proceedings of SPIE Vol. 5221, pp. 182-196 (2003).

110.  A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Broadband Near-Field Interference Spectroscopy of Metal Nanoparticles Using a Femtosecond White-Light Continuum, Optics Lett. 28, 1686-1688 (2003) [PDF file].

109. M. I. Stockman, Ultrafast Processes in Metal-Insulator and Metal-Semiconductor Nanocomposites, In: Ultrafast Phenomena in Semiconductors VII,  Proceedings of SPIE Vol. 4992, 60-74 (2003) (K.F.Tsen, J.Song, and H.Jiang, eds.) (Photonics West 2003 Conference,  2003; Invited talk). (PDF Preprint).

108. M. I. Stockman, S. V. Faleev, and D. J. Bergman, Coherently-Controlled Femtosecond Energy Localization on Nanoscale, In: Ultrafast Phenomena XIII (Springer Series in Chemical Physics), pp. 496-498 (Springer, Berlin, Heidelberg, New York, 2003).

107. D. J. Bergman and M. I. Stockman, Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems, Phys. Rev. Lett. 90, 027402 (2003). [PDF file].

106.  S. V. Faleev and M. I. Stockman, Self-Consistent Random-Phase Approximation for Interacting Electrons in Quantum Well and Intersubband Absorption, Phys. Rev. B 66, 085318-1-11 (2002). [PDF file].

105.   M. I. Stockman, S. V. Faleev, and D. J. Bergman, Coherently-Controlled Femtosecond Energy Localization on Nanoscale, Appl. Phys. B 74(9) 63-67 (2002) [PDF file].

104.   M. I. Stockman, S. V. Faleev, and D. J. Bergman, Coherent Control of Femtosecond Energy Localization in Nanosystems, Phys. Rev. Lett. 88(6) 067402-1-4 (2002) [PDF file ].

103.  M. I. Stockman, S. V. Faleev, and D. J. Bergman, Anderson Localization vs. Delocalization of Surface Plasmons in Nanosystems: Can One State Have Both Characteristics Simultaneously?, Phys. Rev. Lett. 87(16), 167401-1-4 (2001). [PDF file] .

102. S. V. Faleev and M. I. Stockman, Self-Consistent RPA for Two-Dimensional Electron Gas at Finite Temperatures, Phys. Rev. B 63, 193302-1-4 (2001).  [PDF file ].

101. M. I. Stockman, Femtosecond and Attosecond Giant Optical Responses and Fluctuations in Disordered Clusters, Nanocomposites, and Rough Surfaces, In: Ultrafast Phenomena XII (Springer Series in Chemical Physics), T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer, Berlin, Heidelberg, New York, 2001), p.398-400.

100. M. I. Stockman, Local Fields' Localization and Chaos and Nonlinear-Optical Enhancement in Clusters and Composites, In: Optics of Nanostructured Materials, V. A. Markel and T. F. George, eds. (Wiley, New York, 2000), p. 313-354.  [ Preprint: PDF file (2.7 MB)]. 

99. S. V. Faleev and M. I. Stockman, Self-Consistent RPA for Two-Dimensional Electron Gas:  Kadanoff-Baym-Keldysh Approach, Phys. Rev. B 62(24) 16707-16714 (2000). [ PDF file] .

98. M. I. Stockman, Giant Attosecond Fluctuations of Local Optical Fields in Disordered Nanostructured Media, Phys. Rev. B 65(15) 10494-10497 (2000). [ PDF file] .

97. M. I. Stockman, Femtosecond Optical Responses of Disordered Clusters, Composites, and Rough Surfaces; "The Ninth Wave" Effect, Phys. Rev. Lett. 84(5), 1011-1014 (2000). [PDF file]

96. M. I. Stockman, K. B. Kurlayev, and T. F. George, Linear and Nonlinear Optical Susceptibilities of Maxwell-Garnett Composites: Dipolar Spectral Theory, Phys. Rev. B 60(24), 17071-17083 (1999).  [PDF file ].

95. M. I. Stockman, Local Fields' Localization and Chaos and Nonlinear-Optical Enhancement in Composites, In: Computational Studies of  New Materials, T. F. George and D. Jelski, eds. (World Scientific Publishing Company, Singapore, 1999), pp. 244-272.  [PDF file ].

94. S. V. Faleev and M. I. Stockman, Light-Induced Drift in Semiconductor Heterostructures: Microscopic Theory , Phys. Rev. B, 59(11) 7338-7341 (1999). [ PDF file]

93. J. R. Evans and M. I. Stockman, Turbulence and Spatial Correlation of Currents in Quantum Chaos, Phys. Rev. Lett. 81(21) 4624-4627(1998). [ PDF file ]

92. M. I. Stockman, L. N. Pandey, and T. F. George, Enhanced Nonlinear-Optical Responses of Disordered Clusters and Composites (an invited paper), In: Nonlinear Optical Materials   (Jerome V. Moloney, editor), IMA Volumes in Mathematics and its Applications, v.101, p.225,  Springer-Verlag, New York,1998. [A full text of the paper with figures at the end (PDF format) is available - click here ]

91. Y. Ohtsuki, M. I. Stockman, L. N. Pandey, and T. F. George, Laser-Induced Long-Lifetime Electron Tunneling in a Biased Asymmetric Double Quantum Well, Superlattices and Microstructures, 23(2), 273-282 (1998).

90. M. I. Stockman, Chaos and Spatial Correlations for Dipolar Eigenproblems, Phys. Rev. Lett., 79(22), 4562 (1997).  [ PDF file (3.2 MB) of the paper].

89. M. I. Stockman, Inhomogeneous Eigenmode Localization, Chaos, and Correlations in Large Disordered Clusters, Phys. Rev. E 56(6) 6494 (1997) . [ PDF file  (8 MB)].

88. L. Z. Benimetskaya, A. L. Kozionov, S. Yu. Novozhilov, and M. I. Stockman, On Mechanism of Nonlinear Laser Cleavage of DNA, Biofizika (Moscow), 42(3), 607-610 (1997).

87. L.S.Muratov, M.I.Stockman,L.N.Pandey, T.F.George, W.J.Li, B.D.McCombe, J.P.Kaminski, S.J.Allen, andW.J.Schaff, Absorption Saturation Studies of Landau Levels in Quasi-Two-Dimensional Systems, Superlattices and Microstructures 21(4 ), 501-508 (1997).  [ A PDF file (0.2 MB)].

86. M.I.Stockman, L.N.Pandey, and T.F.George, Inhomogeneous Localization of Polar Eigenmodes in Fractals, Phys.Rev. B 53(5), 2183-2186 (1996).  [PDF file]

85. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Comment on ``Photon Scanning Tunneling Microscopy Images of Optical Excitations of Fractal Metal Colloid Clusters'', Phys. Rev. Lett. 75(12), 2450 (1995).

84. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Optical Absorption and Localization of Eigenmodes in Disordered Clusters, Phys. Rev. B 51(1), 185-195 (1995).

83. L.N.Pandey, L.S.Muratov, M.I.Stockman, and T.F.George, Dynamics of Double-Barrier Resonant Tunneling Structures, Phys. Stat. Solidi 185(1), 151-161 (1994).

82. M.I.Stockman and T.F.George, PhotonTunneling Microscope Reveals Local Hot Spots, Physics World 7 (9),27-28 (1994) (invited paper).

81. Y.Ohtsuki, L.N.Pandey, M.I.Stockman, and T.F.George, Laser-Induced Suppression of Electron Tunneling in a Biased Asymmetric Double Quantum Well, Phys. Rev. B 50(4), 2236-2240(1994).

80. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Giant Fluctuations of Local Optical Fields in Fractal Clusters, Phys. Rev. Lett. 72(15),2486-2489 (1994). [PDF file (648 kB)]

79. W.J.Li, B.D.McCombe, J.P.Kaminski, S.J.Allen, M.I.Stockman, L.S.Muratov, L.N.Pandey, T.F.George, and W.J.Shaff, Saturation Spectroscopy of Hot Carriers in Coupled Double Quantum Well Structures, Semicond. Sci. Tech. 9, 630-633 (1994).

78. W.J.Li, B.D.McCombe, M.I.Stockman, L.S.Muratov, L.N.Pandey, T.F.George, J.P.Kaminski, S.J.Allen, and W.J.Shaff, Subband-Landau-Level Relaxation in Single and Coupled-Double Quantum-Well Structures, in: Proceedings of the 6th International Conference on Modulated Semiconductor Structures, (Garmish-Partenkirchen, Germany, 1993).

77. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Intersubband Optical Bistability Induced by Resonant Tunneling in an Asymmetric Double Quantum Well, Phys. Rev. B 48(15), 10966-10971 (1993).

76. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Possibility of Intrinsic Optical (Far-IR) Bistability in an Asymmetric Double Quantum Well, Phys. Lett. A 179, 423-428(1993).

75. M.I.Stockman, L.S.Muratov,and T.F.George, Theory of Light-Induced Drift of Electrons in Coupled Quantum Wells, Phys. Rev. B 46(15), 9595-9602 (1992).

74. V.M.Shalaev, M.I.Stockman,and R.Botet. Resonant Excitations and Nonlinear Optics of Fractals, Physica A 185, 181-186 (1992).

73. M.I.Stockman, V.M.Shalaev,M.Moskovits, R.Botet, and T.F.George, Enhanced Raman Scattering by Fractal Clusters: Scale Invariant Theory, Phys. Rev. B 46(5), 2821-2830(1992).

72. M.I.Stockman, L.S.Muratov, L.N.Pandey, and T.F.George, Kinetics of Intersubband Optical Excitation and Photoinduced Electron Transfer in an Asymmetric Double Quantum Well, Phys. Rev. B 45(15), 8550-8561 (1992).

71. M.I.Stockman, L.S.Muratov,L.N.Pandey, and T.F.George, Light-Induced Electron Transfer Counter to an Electric Field Force in an Asymmetric Double Quantum Well, Phys.Lett. A 163 (3), 233-238 (1992).

70. M.I.Stockman, L.N.Pandey, L.S.Muratov, and T.F.George, Photoinduced Electron Transfer Counter to the Bias Field in Coupled Quantum Wells, in: Photoinduced Charge Effects in Semiconductors: Photoconductivity, Spectroscopy and Electrooptics, Proceedings of Symposium D, Materials Research Society 1992 Spring Meeting, San Francisco, ed. byK.W.Goosen, N.M.Haegel, and D.D.Nolte, Mat. Res. Soc. Symp. Proc. 261,125-130 (1992).

69. A.V.Butenko, V.A.Markel, L.S.Muratov, V.M.Shalaev, and M.I.Stockman, Theory and Numerical Simulation of Optical Properties and Selective Photomodification of Fractal Clusters, in:Nonlinear Optics, ed. by S.G.Rautian (Nova Science Publishers, Commack,New York, 1992).

68. Yu.E.Danilova, S.V.Karpov,A.K.Popov, S.G.Rautian, V.P.Safonov, V.V.Slabko, V.M.Shalaev, and M.I.Stockman, Experimental Investigation of Optical Nonlinearities of Silver Fractal Clusters,in: Nonlinear Optics, ed. by S.G.Rautian (Nova Science Publishers, Commack, New York, 1992).

67. L.N.Pandey, M.I.Stockman, T.F.George, and Devaraj Sahu. Theoretical studies of Electron Transport in Quantum Well Structures, in: Nonlinear Optics, ed. by S.G.Rautian (Nova Science Publishers, Commack, New York, 1992), pp.65-70.

66. M.I.Stockman, T.F.George, and V.M.Shalaev, Field Work and Dispersion Relations of Excitations on Fractals, Phys. Rev. B 44(1), 115-121 (1991).

65. A.V.Butenko, P.A.Chubakov,Yu.E.Danilova, S.V.Karpov, A.K.Popov, S.G.Rautian, V.P.Safonov, V.V.Slabko,V.M.Shalaev, M.I.Stockman, Nonlinear Optics of Metal Fractal Clusters, Z. Phys. D 17, 283-289 (1990).

64. V.A.Markel, L.S.Muratov, M.I.Stockman, and T.F.George, Theory and Numerical Simulation of Optical Propertiesof Fractal Clusters, Phys. Rev. B 43(10), 8183-8195 (1991). [ PDF file]

63. M.I.Stockman, L.N.Pandey, and T.F.George, Light-Induced Drift of Quantum Confined Electrons in Semiconductor Heterostructures, Phys. Rev. Lett. 65(27), 3433-3436 (1990).

62. M.I.Stockman, L.N.Pandey, and T.F.George, Light-Induced Drift of Quantum Confined Electrons in Semiconductor Heterostructures -- Reply, Phys. Rev. Lett. 67(1), 157 (1991).

61. T.T.Rantala, M.I.Stockman,D.A.Jelski, and T.F.George, Linear and Nonlinear Optical Properties of Small Silicon Clusters, J. Chem. Phys. 93(10), 7427-7438(1990).

60. M.I.Stockman, L.N.Pandey, and T.F.George, Effect of Light-Induced Drift in Confined Semiconductor Heterostructures, Technical Digest on Quantum Optoelectronics, 7,173-176 (1991) (Optical Society of America, Salt Lake City, Utah, 1991).

59. T.T.Rantala, M.I.Stockman,D.A.Jelski, and T.F.George, Optical (Hyper)Polarizabilities of Small Silicon Clusters, Mat. Res. Soc. Symp. Proc. 206, 85-90 (1991).

58. V.A.Markel, L.S.Muratov, and M.I.Stockman, Theory and Numerical Simulation of the Optical Properties of Fractal Clusters. ZhETF 98(3), 819-837 (1990) [Translation: Sov.Phys. JETP 71 (3), 455-464 (1990)].

57. T.T.Rantala, M.I.Stockman,and T.F.George, Monte-Carlo Simulation of Polarization-Selective Spectral Hole Burning in Fractal Clusters, in: Scaling in Disordered Materials:Fractal Structure and Dynamics, ed. by T.A.Witten, M.O.Robbins and J.P.Stokes, Proceedings of Symposium W (Extended Abstracts), Materials Research Society 1990 Fall Meeting (Materials Research Society, Pittsburgh,1990), pp.117-120.

56. V.A.Markel, L.S.Muratov, M.I.Stockman, and T.F.George, Scale-Invariant Theory of Optical Properties of Fractal Clusters, in: Scaling in Disordered Materials: Fractal Structureand Dynamics, ed. by T.A.Witten, M.O.Robbins and J.P.Stokes, Proceedings of Symposium W (Extended Abstracts), Materials Research Society 1990 Fall Meeting (Materials Research Society, Pittsburgh, 1990), pp.219-222.

55. M.I.Stockman, Possibilityof the Laser Nanomodification of Surfaces with the Use of the ScanningTunneling Microscope, Autometria #3, 30-41 (1989) [Translation: Optoelectronics, Instrumentation and Data Processing #3, 27-37 (1989)].

54. A.V.Butenko, V.M.Shalaev, and M.I.Stockman, Nonlinear Optical Susceptibilities of Fractal Clusters, Preprint #R527F of The L.V.Kirensky Institute of Physics, Krasnoyarsk,1988, 17 pages.

53. A.V.Butenko, V.M.Shalaev, and M.I.Stockman, Fractals: Giant Optical Nonlinearities in Optics of Fractal Clusters, Z. Phys. D 10(1), 81-92 (1988).

52. V.M.Shalaev, and M.I.Stockman. Fractals: Optical Susceptibility and Giant Raman Scattering, Z. Phys. D 10 (1), 71-79 (1988).

51. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov,A.A.Koshkin, A.V.Lebedev, S.Yu.Novozhilov, and M.I.Stockman, Site-SpecificLaser Modification (Cleavage) of Oligodeoxynucleotides, in: Future Trends in Biomedical Applications of Lasers, SPIE Proc. 1525 , 210-211(1991).

50. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.A.Koshkin, A.V.Lebedev, S.Yu.Novozhilov, and M.I.Stockman, Site-Specific Laser Modification (Cleavage) of Oligodeoxynucleotides, Biopolymers 28(6), 1129-1147 (1989).

49. A.V.Karpov, A.K.Popov, S.G.Rautian, V.P.Safonov, Slabko V.V., V.M.Shalaev, and M.I.Stockman, Observation of a Wavelength- and Polarization-Selective Photomodification of Silver Clusters, Pis'ma ZhETF 48(10), 528-531 (1988) [Translation: JETP Lett. 48 (10),571-575 (1988)].

48. L.Z.Benimetskaya, I.I.Gitelzon, A.L.Kozionov, S.Yu.Novozhilov, V.N.Petushkov, N.S.Rodionova, and M.I.Stockman, Localizationof the Active Site of an Enzyme, Bacterial Luciferase, Using Two-QuantumAffinity Modification, in: Future Trends in Biomedical Applications of Lasers, SPIE Proc. 1525, 242-245 (1991).

47. L.Z.Benimetskaya, A.L.Kozionov, S.Yu.Novozhilov, V.N.Petushkov, N.S.Rodionova, and M.I.Stockman Localization of the Active Center of an Enzyme (Bacterial Luciferase) by Two-QuantumAffine Modification Dokl. Russ. Acad. Sci. 336(1), 114-117 (1994).

46. M.I.Stockman, Selective Two-Quantum Photomodification of Nucleic Acids, in: Molecular Mechanismsof Biological Effects of Optical Radiation, Nauka, Moscow, 1988.

45. V.A.Markel and M.I.Stockman, Kinetics of Two-Quantum Sensitized Excitation in Singlet and Singlet-Triplet Channels, Opt. Spektrosk. 67(1), 115-121 (1989) [Translation: Opticsand Spectroscopy 67(1), 64-68 (1989)].

44. L.A.Gelmedova, L.S.Muratov, and M.I.Stockman, Diffusion Phenomena Induced by Cleavage of Linear Macromolecules, Khimicheskaya Fizika [Chemical Physics] 6(2),234-244 (1987).

43. S.G.Rautian, V.P.Safonov, P.A.Chubakov, V.M.Shalaev, and M.I.Stockman, Surface-Enhanced Parametric Scattering of Light by Silver Clusters, Pis'ma ZhETF 47(4), 200-203 (1988) [Translation: JETP Lett. 47(4), 243-246 (1988)]

42. A.V.Butenko, V.M.Shalaev, and M.I.Stockman, Giant Impurity Nonlinearities in Optics of Fractal Clusters, ZhETF 94(1), 107-124 (1988) [Translation: Sov. Phys. JETP, 67 (1),60-69 (1988)].

41. V.M.Shalaev and M.I.Stockman, Optical Properties of Fractal Clusters (Susceptibility, Surface Enhanced Raman Scattering by Impurities), ZhETF 92(2), 509-522 (1987) [Translation: Sov. Phys. JETP 65(2), 287-294 (1987)].

40. M.I.Stockman, Local Photoprocesses Near the Tip of the Scanning Tunneling Microscope, Preprint #371 ofThe Institute of Automation and Electrometry of the Siberian Branch ofthe USSR Academy of Sciences, 1987, 18 pages.

39. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.A.Koshkin, A.V.Lebedev, S.Yu.Novozhilov, and M.I.Stockman, High-Efficiency Complementary-Directed Laser Modification (Cleavage) of Oligodeoxynucleotides, Bioorganic Chem. 14(1), 48-57 (1988).

38. I.G.Ersh, L.S.Muratov, S.Yu.Novozhilov, B.M.Stockman, and M.I.Stockman, Computer-Controlled Laser Photon-Correlation Spectrometer (Hardware, Algorithms of Data Processing and Codes), Autometria #3, 46-57 (1987).

37. M.I.Stockman, Activation of Chemical Reactions by Non-Small Equilibrium Fluctuations Induced byOptical Excitation of Condensed Media, Preprint #R243 of The Instituteof Automation and Electrometry, the Siberian Branch of the USSR Academyof Sciences, 1987, 15 pages.

36. V.A.Markel, and M.I.Stockman, NonlinearPhotoprocesses in Bichromophores. II. Correlated Fluctuations of Populationsand Fluorescence Intensities, Opt. Spektrosk. 56 (6), 1258-1262(1988) [Translation: Optics and Spectroscopy 56(6), 743-746 (1988)].

35. V.A.Markel, and M.I.Stockman, NonlinearPhotoprocesses in Bichromophores. I. Two-Photon and Cooperative Excitation and Nonlinear Quenching, Opt. Spektrosk. 56(6), 1231-1237 (1988) [Translation: Optics and Spectroscopy 56(6), 727-731 (1988)].

34. I.G.Ersh, L.S.Muratov, S.Yu.Novozhilov, B.M.Stockman, and M.I.Stockman, Computer-Controlled Laser Photon-Correlation Spectrometer (Hardware, Algorithms of Data Processing and Codes), Autometria #3,46-57 (1987).

33. V.A.Markel, and M.I.Stockman, Critical (Percolation) Behavior and Fractal Dimension of Aggregatesin Immunological Agglutination Reaction, Biopolymers and Cells #4 ,35-40 (1988).

32. I.G.Ersh, L.S.Muratov, S.Yu.Novozhilov, B.M.Stockman, and M.I.Stockman, Kinetics of Immunological Reaction ofAgglutination and Rapid Determination of Bacteria Using an Automated LaserPhoton-Correlation Spectrometer, Doklady Academii Nauk SSSR 287(5),1239-1243 (1986) [Translation: Doklady Biochemistry 287, 125-129(1986)].

31. L.Z.Benimetskaya, A.L.Kozionov, L.S.Muratov, S.Yu.Novozhilov, and M.I.Stockman, Nonlinear Laser Photomodification of  Nucleic Acids Induced by Intercalating Dyes, Biophysics 32(4), 716-731 (1987).

30. L.Z.Benimetskaya, N.V.Bulychev, V.V.Gorn, A.L.Kozionov, A.V.Lebedev, S.Yu.Novozhilov, G.A.Podyminogin, and M.I.Stockman, Direct Observation of the Selective Laser Photocleavage of DNA, Biophysics 31(1), 151-152 (1985).

29. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.V.Lebedev, Yu.E.Nesterikhin, S.Yu.Novozhilov, and M.I.Stockman, SelectiveLaser Splitting of Polyadenilate with the Use of a Fluorescent DerivativeDerivatives of Oligothymidilate, Bioorganic Chemistry 10 (4),520-527 (1984).

28. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.V.Lebedev, S.Yu.Novozhilov, and M.I.Stockman, Two-Quantum Selective Laser Modification of Poly-and Oligonucleotides in Complementary Complexes with Dansyl Derivatives of Oligonucleotides, Nucleic AcidRes. Symp. Series #14, s323-s324 (1984).

27. M.I.Stockman, Kinetics ofTwo-Photon Excitation of Impurity Centers in a Condensed Medium, ZhETF 87(1), 84-99 (1984). [Translation: Sov. Phys. JETP 60(1), 49-57 (1984)].

26. M.I.Stockman, Study of Dynamic Effects Using Phase Conjugation of Light Waves, Phys. Lett. A 94 (9),430-433 (1983).

25. A.V.Ghiner M.I.Stockman, andM.A.Vaksman, Surface Light-Induced Drift of a Rarefied Gas, Phys.Lett. A 96 (2), 79-82 (1983).

24. L.Z.Benimetskaya, N.V.Bulychev, A.L.Kozionov, A.V.Lebedev, Yu.E.Nesterikhin, S.Yu.Novozhilov, S.G.Rautian, and M.I.Stockman, Two-Quantum Selective Laser Scission of Polyadenilic Acid in the Complementary Complex with a Dansyl Derivative of Oligothymidilate, FEBS Lett. 163(1), 144-149 (1983).

23. L.Z.Benimetskaya, M.I.Stockman, et all,  Nonlinear Laser Scission of RNA Selective in the Base Set, Pis'ma ZhETF 38(9), 424-427 (1983). [Translation: JETP Lett. 38 (9),513-517 (1983)].

22. L.Z.Benimetskaya, A.L.Kozionov, S.Yu.Novozhilov, and M.I.Stockman, Specificity of the Nonlinear Laser Scission of DNA, Sov. Phys. Doklady 272(1), 217-220 (1983).

21. L.Z.Benimetskaya, V.V.Vernikovsky, A.L.Kozionov, S.Yu.Novozhilov, and M.I.Stockman, Study of Scission and Cross-Links in DNA Induced by Laser Irradiation with Denaturation-Renaturation Method, Proceedings of the Vavilov Conference on Nonlinear Optics, Novosibirsk, 1982, p.196-200.

20. Yu.E.Nesterikhin, S.G.Rautian, and M.I.Stockman, Selective Laser Action on Macromolecules, Sov. Physics Uspekhy 138(2), 321-324 (1982).

19. S.G.Rautian, and M.I.Stockman, Selective Laser Photomodification of Macromolecules: Scission of DNA and Other Phenomena, Proceedings of the Vavilov Conference on Nonlinear Optics, Novosibirsk,1982, p.148-161.

18. L.Z.Benimetskaya, V.V.Vernikovsky, A.L.Kozionov, S.Yu.Novozhilov, V.E.Soloboev, and M.I.Stockman, Study of the Phenomenon of the Nonlinear Laser Scission of DNA Using the Effect of Light-Induced Diffusion, Proceedings of the Vavilov Conference on NonlinearOptics, Novosibirsk, 1982, p.190-195.

17. G.D.Rodionov, M.T.Khodonov,B.M.Stockman, and M.I.Stockman, Efficient Algorithm of Nonlinear GlobalMinimization with Constraints, Autometria #2, 17-24 (1981).

16. A.L.Kozionov, S.Yu.Novozhilov, V.E.Soloboev, and M.I.Stockman, Light-Induced Diffusion of DNA: Theory and Computer-Assisted Experiment, Autometria #6, 73-86 (1981).

15. M.I.Stockman, Effect of Synchronization of Photons, JETP Lett. 31(2), 84-88 (1980).

14. M.I.Stockman, Spectroscopy of the Scattered Light in Biology and Biophysics, Autometria, 1980, #1,310-311.

13. A.L.Kozionov, S.Yu.Novozhilov, V.E.Soloboev, and M.I.Stockman, Light-Induced Diffusion of DNA in Solutions Induced by Laser Scission, Pis'ma ZhETF 31(10), 606-610 (1980) [Translation: JETP Lett. 31(10), 570-573 (1980)].

12. A.I.Parkhomenko, S.G.Rautian,and M.I.Stockman, Nonlinear Laser Photomodification of Macromolecules: Cleavage of DNA, Sov. Phys. Doklady 250(1), 225-228 (1980).

11. V.I.Dudarev, A.I.Parkhomenko, V.P.Safonov, and M.I.Stockman, Nonlinear Photoprocesses in Solutions of Coumarine-4, Sov. Phys. Technical Phys. 50(7), 1497-1503(1980).

10. M.I.Stockman, Effect of Photon Synchronization in Intensity Interference: New Effect and New Possibilities, Phys. Lett. A 80(2,3), 146-148 (1980).

9. M.I.Stockman, and A.I.Parkhomenko, Nonlinear Laser Photoscission of DNA, Proceedings of the Vavilov Conference onNonlinear Optics, Novosibirsk, 1979.

8. M.I.Stockman, Nonlinear Two-Quantum Modification of Macromolecules: Possibility and Applications, Phys.Lett. A 76(2), 191-193 (1980).

7. M.I.Stockman, Optical Correlation Method to Study Interaction of Neurons in Neuronal Networks, Biophysics 25(4),764 (1980).

6. E.V.Khizhnyak, Yu.P.Chernov, and M.I.Stockman, Mathematical Simulation of Perturbations of Electric Field in Conducting Media, Autometria #1, 55-61 (1977).

5. M.I.Stockman, Hypothesis on Quantum Mechanism of the Active Transport, Biophysics 22(3),448-451 (1977).

4. M.I.Stockman, Theory of Nonadiabatic Effects in the Transition Probabilities in Even-Even Deformed Nuclei, Sov. Phys. Nucl. Phys. 22(2), 479-489 (1975).

3. M.I. Stockman, Vortices andFast Electrons in HeII: Possible Experiments and Applications, Phys.Lett. A 46(1), 73-76 (1973).

2. V.G.Zelevinsky, and M.I.Stockman .The Moment of Inertia in the Microscopic Theory of Nuclear Rotation, Sov. Phys. Izvestiya 36(12), 2577-2584 (1972).

1. M.I.Stockman, and V.G.Zelevinsky, On the Phenomenological Description of the Nuclear Rotational States, Phys. Lett. B 41(1), 19-23 (1972).


Backto the Home Page